Best of Both Worlds: Transferring Knowledge from Discriminative Learning to a Generative Visual Dialog Model
We present a novel training framework for neural sequence models, particularly for grounded dialog generation. The standard training paradigm for these models is maximum likelihood estimation (MLE), or minimizing the cross-entropy of the human responses. A
arxiv.org
논문을 깊게 읽고 만든 자료가 아니므로, 참고만 해주세요. 얕은 지식으로 모델의 핵심 위주로만 파악한 자료이다 보니 없는 내용도 많습니다. 혹시 사용하실 경우 댓글 부탁드립니다.
'Paper Reading > Dialogue System' 카테고리의 다른 글
Best of Both Worlds: Transferring Knowledge from Discriminative Learning to a Generative Visual Dialog Model
We present a novel training framework for neural sequence models, particularly for grounded dialog generation. The standard training paradigm for these models is maximum likelihood estimation (MLE), or minimizing the cross-entropy of the human responses. A
arxiv.org
논문을 깊게 읽고 만든 자료가 아니므로, 참고만 해주세요. 얕은 지식으로 모델의 핵심 위주로만 파악한 자료이다 보니 없는 내용도 많습니다. 혹시 사용하실 경우 댓글 부탁드립니다.