Paper Reading

논문을 깊게 읽고 만든 자료가 아니므로, 참고만 해주세요. 얕은 지식으로 모델의 핵심 위주로만 파악한 자료이다 보니 없는 내용도 많습니다. 혹시 사용하실 경우 댓글 부탁드립니다.
PAPER Self-Monitoring Navigation Agent via Auxiliary Progress Estimation The Vision-and-Language Navigation (VLN) task entails an agent following navigational instruction in photo-realistic unknown environments. This challenging task demands that the agent be aware of which instruction was completed, which instruction is needed arxiv.org 논문을 깊게 읽고 만든 자료가 아니므로, 참고만 해주세요. 얕은 지식으로 모델의 핵심 위주로만 파악한 자..
PAPER Unified Pragmatic Models for Generating and Following Instructions We show that explicit pragmatic inference aids in correctly generating and following natural language instructions for complex, sequential tasks. Our pragmatics-enabled models reason about why speakers produce certain instructions, and about how listeners arxiv.org 논문을 깊게 읽고 만든 자료가 아니므로, 참고만 해주세요. 얕은 지식으로 모델의 핵심 위주로만 파악한 자료..
PAPER Integrating Algorithmic Planning and Deep Learning for Partially Observable Navigation We propose to take a novel approach to robot system design where each building block of a larger system is represented as a differentiable program, i.e. a deep neural network. This representation allows for integrating algorithmic planning and deep learnin arxiv.org 논문을 깊게 읽고 만든 자료가 아니므로, 참고만 해주세요. 얕은 지식..
PAPER QMDP-Net: Deep Learning for Planning under Partial Observability This paper introduces the QMDP-net, a neural network architecture for planning under partial observability. The QMDP-net combines the strengths of model-free learning and model-based planning. It is a recurrent policy network, but it represents a policy fo arxiv.org 논문을 깊게 읽고 만든 자료가 아니므로, 참고만 해주세요. 얕은 지식으로 모델의 핵심 위주로만 파악한 자료이..
PAPER FollowNet: Robot Navigation by Following Natural Language Directions with Deep Reinforcement Learning Understanding and following directions provided by humans can enable robots to navigate effectively in unknown situations. We present FollowNet, an end-to-end differentiable neural architecture for learning multi-modal navigation policies. FollowNet maps n arxiv.org 논문을 깊게 읽고 만든 자료가 아니므로, ..
PAPER Speaker-Follower Models for Vision-and-Language Navigation Navigation guided by natural language instructions presents a challenging reasoning problem for instruction followers. Natural language instructions typically identify only a few high-level decisions and landmarks rather than complete low-level motor behav arxiv.org 논문을 깊게 읽고 만든 자료가 아니므로, 참고만 해주세요. 얕은 지식으로 모델의 핵심 위주로만 파악한 자료이다 보니 없..
PAPER Vision-and-Language Navigation: Interpreting visually-grounded navigation instructions in real environments A robot that can carry out a natural-language instruction has been a dream since before the Jetsons cartoon series imagined a life of leisure mediated by a fleet of attentive robot helpers. It is a dream that remains stubbornly distant. However, recent adv arxiv.org Challenge & Data ..
PAPER 논문을 깊게 읽고 만든 자료가 아니므로, 참고만 해주세요. 얕은 지식으로 모델의 핵심 위주로만 파악한 자료이다 보니 없는 내용도 많습니다. 혹시 사용하실 경우 댓글 부탁드립니다.
PAPER A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues Sequential data often possesses a hierarchical structure with complex dependencies between subsequences, such as found between the utterances in a dialogue. In an effort to model this kind of generative process, we propose a neural network-based generative arxiv.org 논문을 깊게 읽고 만든 자료가 아니므로, 참고만 해주세요. 얕은 지식으로 모델의 핵심..
PAPER Best of Both Worlds: Transferring Knowledge from Discriminative Learning to a Generative Visual Dialog Model We present a novel training framework for neural sequence models, particularly for grounded dialog generation. The standard training paradigm for these models is maximum likelihood estimation (MLE), or minimizing the cross-entropy of the human responses. A arxiv.org 논문을 깊게 읽고 만든 자료가..
PAPER Deep Reinforcement Learning for Dialogue Generation Recent neural models of dialogue generation offer great promise for generating responses for conversational agents, but tend to be shortsighted, predicting utterances one at a time while ignoring their influence on future outcomes. Modeling the future dire arxiv.org 논문을 깊게 읽고 만든 자료가 아니므로, 참고만 해주세요. 얕은 지식으로 모델의 핵심 위주로만 파악한 자료이다 보니 없는 내용도 많..
PAPER Two can play this Game: Visual Dialog with Discriminative Question Generation and Answering Human conversation is a complex mechanism with subtle nuances. It is hence an ambitious goal to develop artificial intelligence agents that can participate fluently in a conversation. While we are still far from achieving this goal, recent progress in visu arxiv.org 논문을 깊게 읽고 만든 자료가 아니므로, 참고만 해주세요. ..
PAPER FlipDial: A Generative Model for Two-Way Visual Dialogue We present FlipDial, a generative model for visual dialogue that simultaneously plays the role of both participants in a visually-grounded dialogue. Given context in the form of an image and an associated caption summarising the contents of the image, Flip arxiv.org 논문을 깊게 읽고 만든 자료가 아니므로, 참고만 해주세요. 얕은 지식으로 모델의 핵심 위주로만 파악한 자료이다 보니 없는 ..
PAPER Are You Talking to Me? Reasoned Visual Dialog Generation through Adversarial Learning The Visual Dialogue task requires an agent to engage in a conversation about an image with a human. It represents an extension of the Visual Question Answering task in that the agent needs to answer a question about an image, but it needs to do so in light arxiv.org 논문을 깊게 읽고 만든 자료가 아니므로, 참고만 해주세요. 얕은 지식으..
PAPER 논문을 깊게 읽고 만든 자료가 아니므로, 참고만 해주세요. 얕은 지식으로 모델의 핵심 위주로만 파악한 자료이다 보니 없는 내용도 많습니다. 혹시 사용하실 경우 댓글 부탁드립니다.
Js.Y
'Paper Reading' 카테고리의 글 목록 (4 Page)